Search results for "Metabotropic glutamate receptor 6"

showing 4 items of 4 documents

Metabotropic glutamate receptors activate phospholipase D in astrocytes through a protein kinase C-dependent and Rho-independent pathway.

2003

Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that mediate phospholipase D (PLD) activation in brain, but the mechanism underlying this response remains unclear. Here we used primary cultures of astrocytes as a cell model to explore the mechanism that links mGluRs to PLD. Glutamate activated both phospholipase C (PLC) and PLD with equal potency and this effect was mimicked by L-cysteinesulfinic acid, a putative neurotransmitter previously shown to activate mGluRs coupled to PLD, but not PLC, in adult brain. PLD activation by glutamate was dependent on Ca(2+) mobilization and fully blocked by both protein kinase C (PKC) inhibitors and PKC down-regulation, suggesti…

rho GTP-Binding ProteinsIndolesBacterial ToxinsGlutamic AcidBiologyReceptors Metabotropic GlutamateSulfenic AcidsMaleimidesRats Sprague-DawleyCellular and Molecular NeuroscienceBacterial ProteinsStress FibersmedicinePhospholipase DAnimalsCysteineEgtazic AcidProtein kinase CCells CulturedProtein Kinase CChelating AgentsPharmacologyProtein Synthesis InhibitorsBrefeldin APhospholipase CDose-Response Relationship DrugEndothelin-1Phospholipase DADP-Ribosylation FactorsMetabotropic glutamate receptor 6Glutamate receptorDNAMolecular biologyRatsenzymes and coenzymes (carbohydrates)medicine.anatomical_structureMetabotropic receptorMetabotropic glutamate receptorAstrocytesType C PhospholipasesTetradecanoylphorbol Acetatelipids (amino acids peptides and proteins)AstrocyteNeuropharmacology
researchProduct

Effects of Presynaptic Mutations on a Postsynaptic Cacna1s Calcium Channel Colocalized with mGluR6 at Mouse Photoreceptor Ribbon Synapses

2008

Purpose Photoreceptor ribbon synapses translate light-dependent changes of membrane potential into graded transmitter release via L-type voltage-dependent calcium channel (VDCC) activity. Functional abnormalities (e.g., a reduced electroretinogram b-wave), arising from mutations of presynaptic proteins, such as Bassoon and the VDCCalpha1 subunit Cacna1f, have been shown to altered transmitter release. L-type VDCCalpha1 subtype expression in wild-type and mutant mice was examined, to investigate the underlying pathologic mechanism. Methods Two antisera against Cacna1f, and a Cacna1f mouse mutant (Cacna1fDeltaEx14-17) were generated. Immunocytochemistry for L-type VDCCalpha1 subunits and addi…

MaleCalcium Channels L-TypeBlotting WesternPresynaptic TerminalsRibbon synapseBiologyReceptors Metabotropic GlutamateSynaptic TransmissionEpitopesMicePostsynaptic potentialAnimalsCalcium SignalingActive zoneFluorescent Antibody Technique IndirectMicroscopy ImmunoelectronSequence DeletionMembrane potentialSheepVoltage-dependent calcium channelReverse Transcriptase Polymerase Chain ReactionCalcium channelMetabotropic glutamate receptor 6ColocalizationAnatomyBlotting NorthernMice Mutant StrainsPeptide FragmentsCell biologyMice Inbred C57BLFemaleCalcium ChannelsRabbitssense organsPhotoreceptor Cells VertebrateInvestigative Opthalmology & Visual Science
researchProduct

Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium.

1999

To date, no conclusive evidence has been presented for the existence of neuronal-like elements in Porifera (sponges). In the present study, isolated cells from the marine sponge Geodia cydonium are shown to react to the excitatory amino acid glutamate with an increase in the concentration of intracellular calcium [Ca2+]i. This effect can also be observed when the compounds L-quisqualic acid (L-QA) or L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) are used. The effect of L-QA and L-AP-4, both agonists for metabotropic glutamate receptors (mGluRs), can be abolished by the antagonist of group I mGluRs, (RS)-alpha-methyl-4-carboxyphenylglycine. These data suggest that sponge cells contain an mG…

HistologyMolecular Sequence DataGlutamic AcidClass C GPCRBiologyReceptors Metabotropic GlutamatePathology and Forensic MedicineMiceReceptors GABAAnimalsAmino Acid SequenceCloning MolecularSequence Homology Amino AcidMetabotropic glutamate receptor 4Metabotropic glutamate receptor 7Metabotropic glutamate receptor 6Cell BiologyRecombinant ProteinsPoriferaRatsKineticsDrosophila melanogasternervous systemBiochemistryMetabotropic glutamate receptorMetabotropic glutamate receptor 1CalciumMetabotropic glutamate receptor 3Metabotropic glutamate receptor 2Excitatory Amino Acid AntagonistsSequence AlignmentCell and tissue research
researchProduct

Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells

2000

RT-PCR combined with immunoblotting showed the expression of group-I (mGlu1 and 5) and group-II (mGlu2 and 3) metabotropic glutamate receptors in whole mouse thymus, isolated thymocytes and TC-1S thymic stromal cell line. Cytofluorimetric analysis showed that mGlu-5 receptors were absent in CD4(-)/CD8(-) but present in more mature CD4(+) CD8(+) and CD4(+)CD8(-) thymocytes. mGlu-1a receptors showed an opposite pattern of expression with respect to mGlu5, whereas mGlu2/3 receptor expression did not differ between double negative and double positive cells. mGlu receptors expressed in both thymic cell components were functional, as indicated by measurements of polyphosphoinositide hydrolysis or…

CD4-Positive T-LymphocytesMalemedicine.medical_specialtyStromal cellNeuroimmunomodulationReceptor expressionBlotting WesternImmunologyGene ExpressionThymus GlandCD8-Positive T-LymphocytesReceptors Metabotropic GlutamateCell LineMicePhosphatidylinositol PhosphatesInternal medicineCyclic AMPmedicineAnimalsImmunology and AllergyCycloleucineRNA MessengerReceptorReverse Transcriptase Polymerase Chain ReactionChemistryMetabotropic glutamate receptor 5HydrolysisMetabotropic glutamate receptor 6Flow CytometryCell biologyMice Inbred C57BLNeuroprotective AgentsEndocrinologyMetabotropic receptormetabotropic glutamate receptors; tc-1s cells; thymocytesNeurologyMetabotropic glutamate receptorMetabotropic glutamate receptor 1Neurology (clinical)Stromal CellsSignal TransductionJournal of Neuroimmunology
researchProduct